Sketching Polynomial Graphs

1. Sketch a graph of the polynomial function \(f \) if
 \[
 f \text{ is increasing when } x < -1 \text{ and } 0 < x < 1,
 \]
 \[
 f \text{ is decreasing when } -1 < x < 0 \text{ and } x > 1,
 \]
 and \(f(x) < 0 \) for all real numbers.

 Describe the degree and leading coefficient of the function \(f \).

2. \(f \) is increasing on the interval \((-2, 3)\); \(f \) is decreasing on the intervals \((-\infty, -2)\) and \((3, \infty)\).

3. \(f(x) > 0 \) on the intervals \((-\infty, -4)\) and \((1, 5)\);
 \(f(x) < 0 \) on the intervals \((-4, 1)\) and \((5, \infty)\).

4. The number of students \(S \) (in thousands) who graduate in four years from a university can be modeled by the function \(S(t) = -\frac{1}{4}t^3 + t^2 + 23 \), where \(t \) is the number of years since 2010.

 a. Use a graphing calculator to graph the function for the interval \(0 \leq t \leq 5 \). Describe the behavior of the graph on this interval.

 b. What is the average rate of change in the number of four-year graduates from 2010 to 2015?

 c. Do you think this model can be used for years before 2010 or after 2015? Explain your reasoning.