Core Concepts

Properties of the Graph of $f(x) = ax^2 + bx + c$

- The parabola opens up when $a > 0$ and open down when $a < 0$.
- The graph is narrower than the graph of $f(x) = x^2$ when $|a| > 1$ and wider when $|a| < 1$.
- The axis of symmetry is $x = -\frac{b}{2a}$ and the vertex is $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$.
- The y-intercept is c. So, the point $(0, c)$ is on the parabola.

Minimum and Maximum Values

For the quadratic function $f(x) = ax^2 + bx + c$, the y-coordinate of the vertex is the minimum value of the function when $a > 0$ and the maximum value when $a < 0$.

- Minimum value: $y \leq f\left(-\frac{b}{2a}\right)$
- Domain: All real numbers
- Range: $y \geq f\left(-\frac{b}{2a}\right)$
- Decreasing to the left of $x = -\frac{b}{2a}$
- Increasing to the right of $x = -\frac{b}{2a}$

- Maximum value: $f\left(-\frac{b}{2a}\right)$
- Domain: All real numbers
- Range: $y \leq f\left(-\frac{b}{2a}\right)$
- Increasing to the left of $x = -\frac{b}{2a}$
- Decreasing to the right of $x = -\frac{b}{2a}$
Properties of the Graph of $f(x) = a(x - p)(x - q)$

- Because $f(p) = 0$ and $f(q) = 0$, p and q are the x-intercepts of the graph of the function.
- The axis of symmetry is halfway between $(p, 0)$ and $(q, 0)$.
 So, the axis of symmetry is $x = \frac{p + q}{2}$.
- The parabola opens up when $a > 0$ and opens down when