Chapter 3 Section 1: Transformations of Quadratic Functions

- A quadratic function is a function that can be written in the form \(f(x) = _____________ \) where \(a \neq 0 \).

Horizontal Translations:

\[
f(x) = x^2 \\
f(x-h) = (x-h)^2
\]

h > 0, shift right

h < 0, shift left

Example 1: Describe the transformation of \(f(x) = x^2 \) represented by \(h(x) = (x-1)^2 + 2 \).

Vertical Translations:

\[
f(x) = x^2 \\
f(x) + k = x^2 + k
\]

k > 0, shift up

k < 0, shift down

Reflection in the x-axis

\[
f(x) = x^2 \\
-f(x) = -(x^2) = -x^2
\]

flips over the x-axis

Reflection in the y-axis

\[
f(x) = x^2 \\
f(-x) = (-x)^2 = x^2
\]

\(y - x^2 \) is its own reflection in the y-axis.

Horizontal stretch and shrink

\[
f(x) = x^2 \\
f(ax) = (ax)^2
\]

- horizontal stretch (away from y-axis) when \(0 < a < 1 \)
- horizontal shrink (toward y-axis) when \(a > 1 \)

Vertical stretch and shrink

\[
f(x) = x^2 \\
a \cdot f(x) = ax^2
\]

- vertical stretch (away from x-axis) when \(0 < a < 1 \)
- vertical shrink (toward x-axis) when \(a > 1 \)
Example 2: Describe the transformation of \(f(x) = x^2 \) represented by \(h \).

a) \(h(x) = -3x^2 \)

b) \(h(x) = \left(\frac{1}{4}x\right)^2 - 2 \)

Writing Transformations of Quadratic Functions

- The vertex form of a quadratic function is \(f(x) = \text{_______________________________} \), where \(a \neq 0 \) and the vertex is \((h,k)\).

Example 3: Let the graph of \(g \) be a horizontal shrink by a factor of \(1/3 \) and a reflection in the \(y \)-axis, followed by a translation 2 units up of the graph of \(f(x) = x^2 \). Write a rule for \(g \) and identify the vertex.

Example 4: Let the graph of \(g \) be a translation 4 units left and 1 unit down, followed by a reflection in the \(y \)-axis of the graph \(f(x) = x^2 \). Write a rule for \(g \) and identify the vertex.