6.6 Practice

In Exercises 1–3, find the inverse of the function. Then graph the function and its inverse.

1. \(f(x) = 2x + 3 \)
2. \(f(x) = \frac{1}{3}x - 2 \)
3. \(f(x) = 4x \)

4. Determine whether each pair of functions \(f \) and \(g \) are inverses. Explain your reasoning.

 a. \[
 \begin{array}{c|cccc}
 x & -2 & -1 & 0 & 1 \\
 \hline
 f(x) & -3 & 3 & 9 & 15 \\
 \end{array}
 \]

 b. \[
 \begin{array}{c|cccc}
 x & 1 & 2 & 3 & 4 & 5 \\
 \hline
 f(x) & 9 & 7 & 5 & 3 & 1 \\
 \end{array}
 \]

In Exercises 5–6, find the inverse of the function. Then graph the function and its inverse.

5. \(f(x) = 9x^2, \ x \geq 0 \)

6. \(f(x) = 16x^2, \ x \leq 0 \)
In Exercises 7 and 8, use the graph to determine whether the inverse of \(f \) is a function. Explain your reasoning.

7.

8.

In Exercises 9–11, find the inverse of the function. Then graph the function and its inverse.

9. \(f(x) = -3x + 4 \)

10. \(f(x) = -\frac{1}{3}x + 1 \)

11. \(f(x) = -9x^2, \ x \leq 0 \)

12. Describe and correct the error in finding the inverse function.

\[
\begin{align*}
\times
\quad f(x) &= 3x - 8 \\
\quad y &= 3x - 8 \\
\quad x &= 3y - 8 \\
\quad f^{-1}(x) &= 3x - 8
\end{align*}
\]

13. The area of a circle is given by \(A = \pi r^2 \) where \(r \) is the radius.

a. Find the inverse function. Describe what it represents.

b. Find the radius of a circle with an area of \(64\pi \) square meters.